Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Ocean Engineering ; 272:113617.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2245684

ABSTRACT

This paper reviews research in ocean engineering over the last 50+ years with the aim to (I) understand the technological challenges and evolution in the field, (II) investigate whether ocean engineering studies meet present global demands, (III) explore new scientific/engineering tools that may suggest pragmatic solutions to problems, and (IV) identify research and management gaps, and the way forward. Six major research divisions are identified, namely (I) Ocean Hydrodynamics, (II) Risk Assessment and Safety, (III) Ocean Climate and Geophysics: Data and Models, (IV) Control and Automation in the Ocean, (V) Structural Engineering and Manufacturing for the Ocean, and (VI) Ocean Renewable Energy. As much as practically possible research sub-divisions of the field are also identified. It is highlighted that research topics dealing with ocean renewable energy, control and path tracking of ships, as well as computational modelling of wave-induced motions are growing. Updating and forecasting energy resources, developing computational methods for wave generation, and introducing novel methods for the optimised control of energy converters are highlighted as the potential research opportunities. Ongoing studies follow the global needs for environmentally friendly renewable energies, though engineering-based studies often tend to overlook the longer-term potential influence of climate change. Development and exploitation of computational engineering methods with focus on continuum mechanics problems remain relevant. Notwithstanding this, machine learning methods are attracting the attention of researchers. Analysis of COVID-19 transmission onboard is rarely conducted, and 3D printing-based studies still need more attention from researchers.

2.
Sci Total Environ ; 844: 157142, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-1914988

ABSTRACT

The repercussions of the COVID-19 pandemic and climate change - two major current global crises - are far-reaching, the parallels between the two are striking, and their influence on one another are significant. Based on the wealth of evidence that has emerged from the scientific literature during the first two years of the pandemic, this study argues that these two global crises require holistic multisectoral mitigation strategies. Despite being different in nature, neither crisis can be effectively mitigated without considering their interdependencies. Herein, significant interactions between these two crises are highlighted and discussed. Major implications related to the economy, energy, technology, environment, food systems and agriculture sector, health systems, policy, management, and communities are detailed via a review of existing joint literature. Based on these outcomes, practical recommendations for future research and management are provided. While the joint timing of these crises has created a global conundrum, the COVID-19 pandemic has demonstrated opportunities and lessons for devising sustainable recovery plans in relation to the climate crisis. The findings indicated that governments should work collaboratively to develop durable and adjustable strategies in line with long-term, global decarbonisation targets, promote renewable energy resources, integrate climate change into environmental policies, prioritise climate-smart agriculture and local food systems, and ensure public and ecosystem health. Further, differences in geographic distributions of climate change and COVID-19 related death cases revealed that these crises pose different threats to different parts of the world. These learnings provide insights to address the climate emergency - and potential future global problems with similar characteristics - if international countries act urgently and collectively.


Subject(s)
COVID-19 , Climate Change , COVID-19/epidemiology , Ecosystem , Environmental Policy , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL